Qus : 1
3
The value of
2tan-1 [cosec(tan-1 x) - tan(cot-1 x)]
1
tan x
2
cot x
3
tan-1 x
4
cosec-1 x
Go to Discussion
Solution
Qus : 2
1
If n 1 and n 2 are the number of real valued solutions x = | sin^{–1} x | & x = sin (x) respectively, then the value of n_2– n_1 is
1
1
2
0
3
2
4
3
Go to Discussion
Solution
Qus : 3
2
The correct expression for cos^{-1} (-x) is
1
\frac{\pi}{2}-cos^{-1} x
2
\pi - cos^{-1} x
3
\pi + cos^{-1} x
4
\frac{\pi}{2} + cos^{-1} x
Go to Discussion
Solution You should learn it as an important formula.
Qus : 4
1
The value of \cot \Bigg{(}{cosec}^{-1}\frac{5}{3}+{\tan }^{-1}\frac{2}{3}\Bigg{)} is
1
6/17
2
3/17
3
4/17
4
5/17
Go to Discussion
Solution
Qus : 5
4
Solutions of the equation {\tan }^{-1}\sqrt[]{{x}^2+x}+{\sin }^{-1}\sqrt[]{{x}^2+x+1}=\frac{\pi}{2} are
1
0, -1
2
1, -1
3
0, -1
4
0, -2
Go to Discussion
Solution
Qus : 6
4
If cos^{-1} \frac{x}{2}+cos^{-1} \frac{y}{3}=\phi , then 9x^2-12xy cos\phi+4y^2 is
1
-36 sin^2\phi
2
36 sin^2\phi
3
36 cos^2\phi
4
36
Go to Discussion
Solution
Qus : 9
4
Find the principal value of
is
1
π/2
2
π/6
3
7π/6
4
5π/6
Go to Discussion
Solution
Qus : 10
1
The value of
is
1
6/17
2
3/17
3
4/17
4
5/17
Go to Discussion
Solution
Qus : 11
3
The value of sin^{-1}\frac{1}{\sqrt{2}}+sin^{-1}\frac{\sqrt{2}-\sqrt{1}}{\sqrt{6}}+sin^{-1}\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}+... to infinity , is equal to
1
\pi
2
\frac{\pi}{3}
3
\frac{\pi}{2}
4
\frac{\pi}{4}
Go to Discussion
Solution
[{"qus_id":"3790","year":"2018"},{"qus_id":"4279","year":"2017"},{"qus_id":"4280","year":"2017"},{"qus_id":"4282","year":"2017"},{"qus_id":"9476","year":"2020"},{"qus_id":"11110","year":"2022"},{"qus_id":"11128","year":"2022"},{"qus_id":"11144","year":"2022"},{"qus_id":"11153","year":"2022"},{"qus_id":"11536","year":"2023"},{"qus_id":"10226","year":"2015"}]